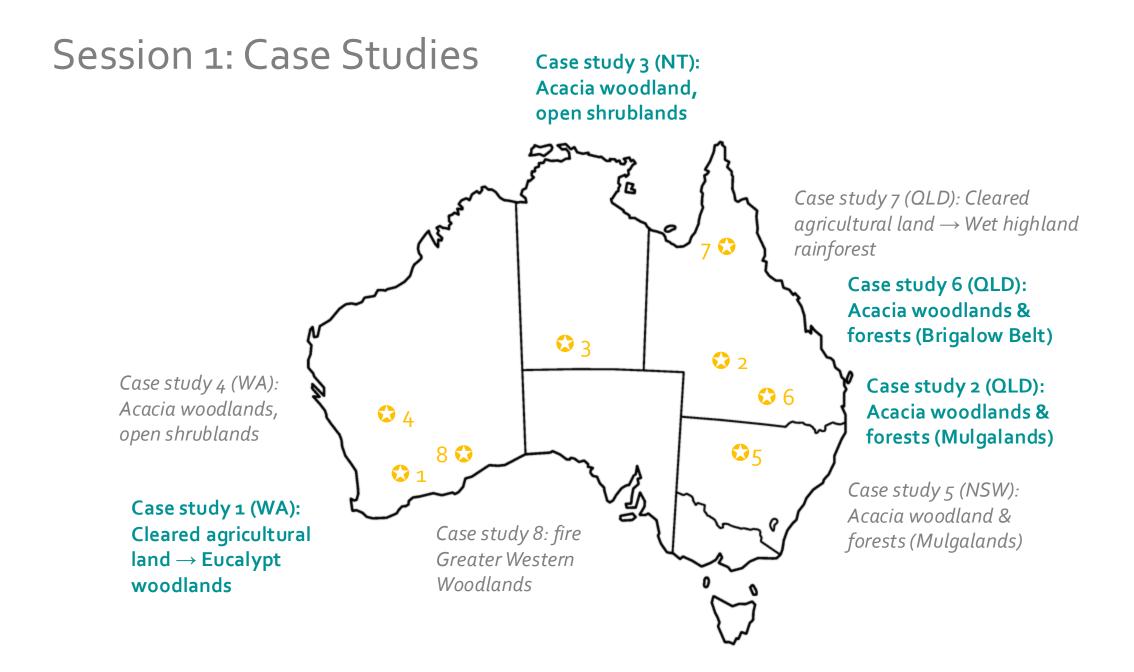
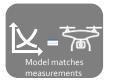

Session 1: Overview of five-step project cycle & application in diverse ecosystems around Australia



Five major innovations of IFLM

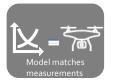
Session 1: Overview five-step IFLM project cycle



Case study 1 (WA): Cleared agricultural land → Eucalypt woodlands

IFLM Step	Property type & size	Mixed farming enterprise, 4,600 ha
18	Location	Katanning, WA – 478 mm annual rainfall
	Traditional Owners	Goreng People
	Currently registered under ACCU scheme?	Woody biomass: Yes, under the environmental plantings method Soil: Yes
ıb	Barriers limiting carbon sequestration potential	Ecological: Tree recruitment requires good rainfall for spontaneous germination, followed by low or no grazing pressure
		Biological : Competition from introduced grass species and a lack of native seed source or propagules
		Physical/chemical: Over-grazing and soil cultivation has led to a lack of year round ground cover, leading to poor rainfall infiltration
1C	Management activities	Ecological: Temporarily removed grazing pressure
	to address barriers	Biological: Introduced native tubestock i.e. facilitated regeneration
		Physical/chemical: Deep ripped to ensure favourable seed bed
ıd	Risk based leakage assessment	Leakage risk is low-moderate. Grazing temporarily displaced until trees are above grazing height. Leakage mitigation strategy involved planting in strips to facilitate an optimal tree/pasture balance, livestock will be re-introduced once trees exceed grazing height.
10	Evidence & monitoring examples	Receipts for planting contractors and purchase of seedlings Satellite based monitoring of survival and transition to forest cover
2a	Stratify the project	Soil & planting CEAs (350ha) would fully overlap under IFLM
2b	Material gap analysis	Based on aboveground woody carbon stock CEA: o t C ha ⁻¹ Ecosystem benchmark: 42 t C ha ⁻¹ (conceptual model)

Case study 1 (WA): Cleared agricultural land \rightarrow Eucalypt woodlands


Carbon stocks in living trees (tC/ha)

Case study 2
(QLD):
Acacia woodlands
and forests;
Mulgalands

IFLM Step	Property type & size	Rangelands pastoral enterprise; ~60,000 ha	
1a	Location	Cheepie, QLD – 348 mm annual rainfall	
	Traditional Owners	Bidjara and Mardigan Peoples	
	Currently registered under ACCU scheme?	Woody biomass: Yes, under the under the human induced regeneration method	
ıb	Barriers limiting carbon	Ecological: Tree recruitment typically requires above-average summer rainfall	
	sequestration potential	Biologica l: Overstocking of domestic livestock leads to use of trees as fodder, especially damaging for young seedlings	
		Physical/chemical: Heavy grazing removes ground cover during dry periods, leading to poor infiltration capacity and reduced productivity when water returns, exacerbating reliance on trees for fodder	
1C	Management activities to	Biological: Reduce/modify stocking rate to reduce livestock consumption of tree fodder	
	address barriers	Physical/chemical: Increase pasture rest to improve ground cover, increase rainfall infiltration	
ıd	Risk based leakage assessment	Fodder harvesting – Leakage risk is moderate-high. Project area contains a large non- implementation area under operational control of the proponent, where fodder harvesting could be displaced to. Leakage monitoring is required.	
		Grazing – Moderate. Project could trigger displacement of fodder harvesting activity to provide feed for displaced livestock. Outline leakage prevention strategy in the LMS.	
10	Evidence & monitoring examples	Third-party evidence of livestock numbers over baseline and project period Assessment of actual vs 'safe' grazing pressure	
2a	Stratify the project	Woody biomass: spontaneous regeneration new cohort 28,0000 ha spontaneous regeneration understorey 12,800 ha	
2b	Material gap analysis (Justification of abatement potential)	CEA: 4 t C ha-1 Ecosystem benchmark: Option 1: Conceptual model: 18 t C ha ⁻¹ Option 2: reference ecosystem: 58 t C ha ⁻¹	

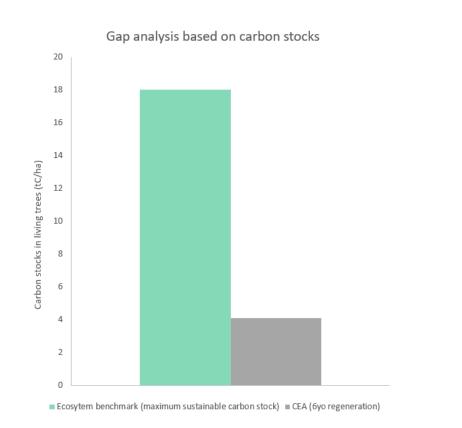
N

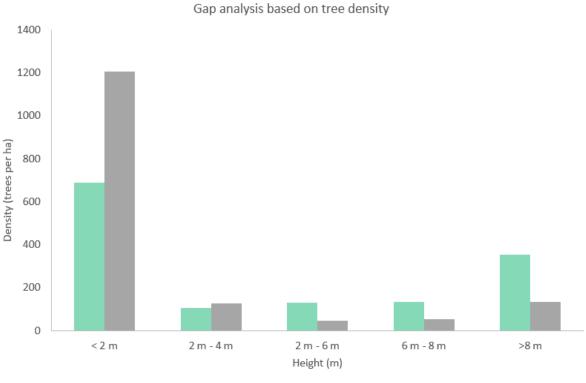
Case study 2 (QLD): Acacia woodlands and forests; Mulgalands

Step 2b: Material gap analysis

Case study 2 (QLD): Acacia woodlands and forests; Mulgalands

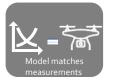
Step 2a: Stratification


Case study 2 (QLD): Acacia woodlands and forests; Mulgalands


Option 1:

Step 2b: Material gap analysis

Option 2:

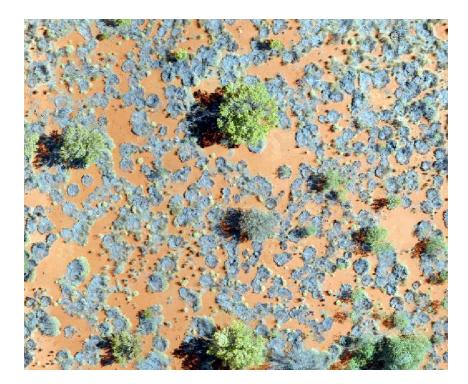


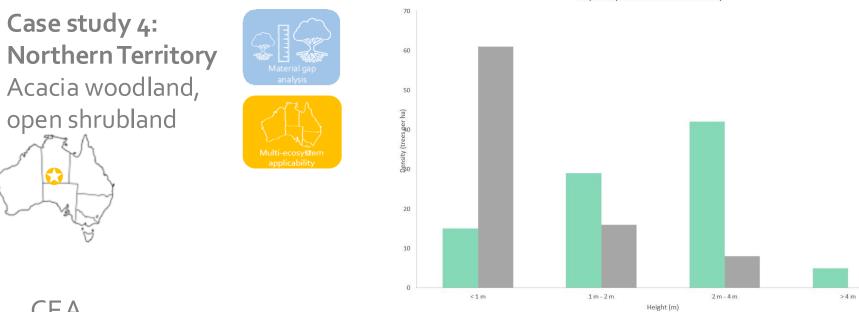
■ Ecosystem benchmark (~80yo forest) ■ CEA (6yo regeneration)

Case study 3: Northern Territory Acacia woodland, open shrubland

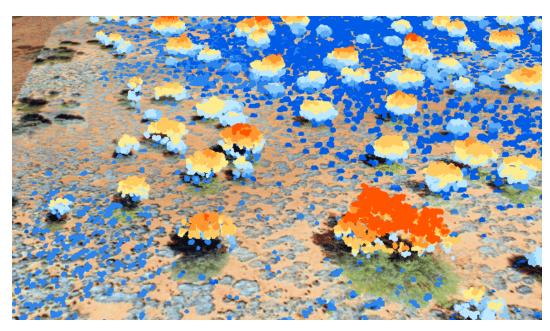
IFLM Step	Property type & size	Extensive grazing , circa 600k ha
1a	Location	South of Alice Springs
	Ecosystem	Acacia woodland/ open shrubland
	Traditional Owners	Central Land Council - Anangu
	Currently registered under ACCU scheme?	Woody biomass: Yes, under the human induced regeneration method (registered 2022)
ıb	Barriers limiting carbon sequestration potential	Ecological: Dysfunctional hydrological processes Biological: Very high grazing pressure, feral grazing pressure
1C	Management activities to address barriers	Ecological: slow rates of water flow Biological: Manage total stock, rest based grazing, reduce distance to water, reduce stock/water, feral control, increase groundcover/slow flow and increase infiltration
ıd	Risk based leakage assessment	Leakage risk is low, as the carbon project investments will enable more strategic grazing management, meaning stock numbers are matched to safe grazing limits and developed sustainably
10	Evidence & monitoring examples	Stock numbers and distribution, feral control, water point development costs,
2a	Stratify the project	Aboveground CEA
2b	Material gap analysis (Justification of abatement potential)	Field survey (species ID and stem counts), fixed wing and plot-based LiDAR for height classes Reference condition

Case study 4: Northern Territory Acacia woodland, open shrubland





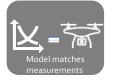
CEA



Forest

Gap analysis based on tree density

CEA

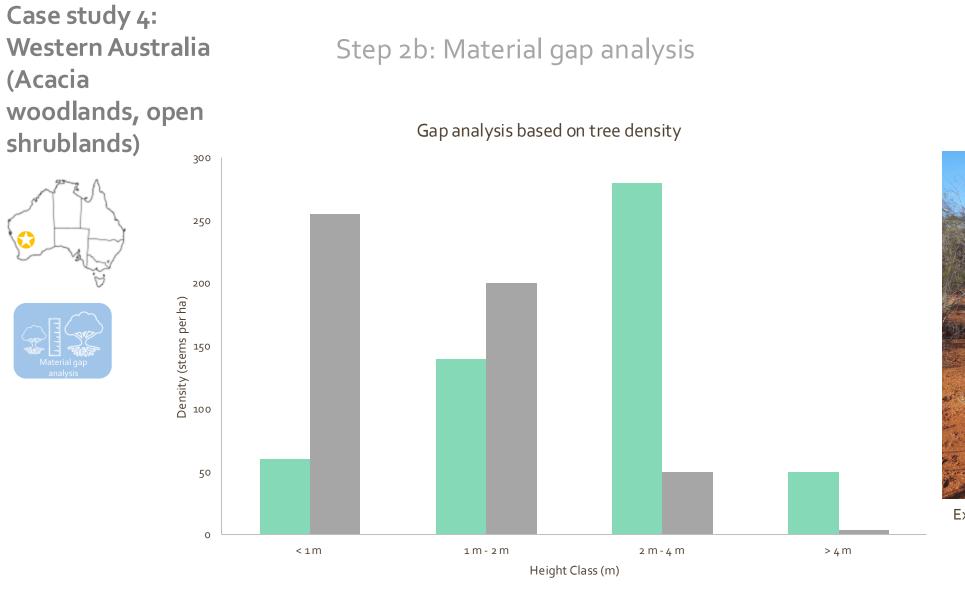


Case study : 4 Western Australia Acacia woodland and Open Shrubland

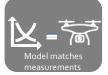
IFLM Step	Property type & size	Pastoral grazing (100,000 ha)
1a	Location	Murchison Shire, WA
	Ecosystem	Acacia woodlands and Open Shrublands
	Traditional Owners	Wajarri Yamaji Aboriginal Corporation RNTBC
	Currently registered under ACCU scheme?	Woody biomass: Yes, under the under the human induced regeneration method (registered 2023)
ıb	Barriers limiting carbon sequestration potential	Ecological : Tree recruitment typically requires above-average summer rainfall
		Biological : Overstocking of domestic livestock (exacerbated by drought) leads to use of tree sand tall shrubs as fodder, especially damaging for young seedlings
		Physical/chemical: Heavy grazing removes ground cover, leading to poor infiltration capacity and reduced productivity when water returns, exacerbating reliance on trees and shrubs as forage
1C	Management activities to address barriers	Biological: Changing the timing and extent of grazing
ıd	Risk based leakage assessment	Low
10	Evidence & monitoring requirements	Stock records, on-ground monitoring of recruitment and recovery
2a	Stratify the project	Stratification based on geophysical, vegetation and management data sets coupled with field-based sampling and remote sensing
2b	Material gap analysis (Justification of abatement potential)	Used stem density measures comparing CEA and forest areas demonstrates potential

Case study 4: Western Australia (Acacia Woodlands and Open Shrublands)


Step 1e: Evidence & Monitoring Examples


Loss of vegetation cover due to heavy grazing around waterpoint

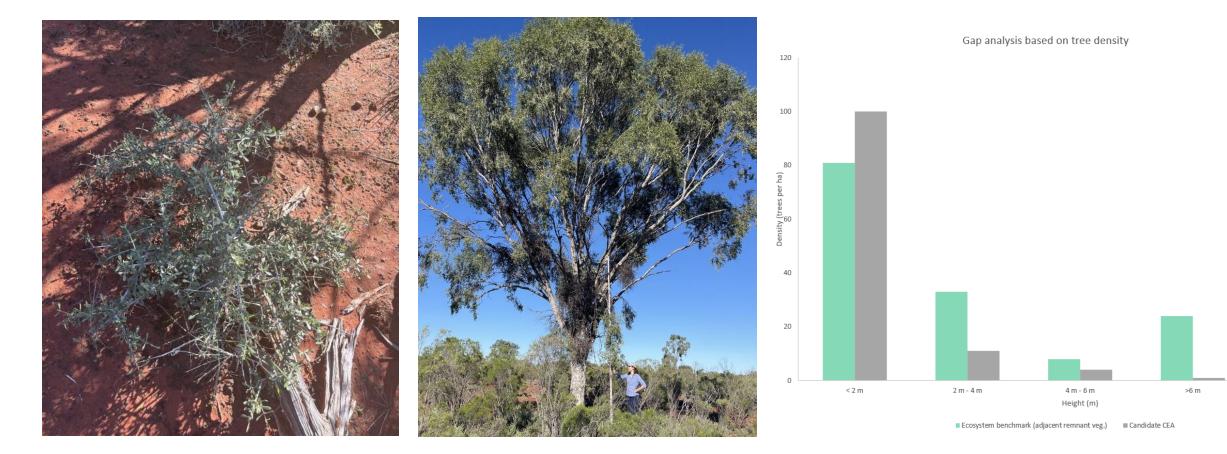
ga recruitment



Example Acacia woodland ecosystem benchmark

■ Ecosystem Benchmark ■ CEA

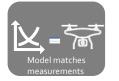
Case study 5 (NSW): Acacia woodland & forests (Mulgalands)



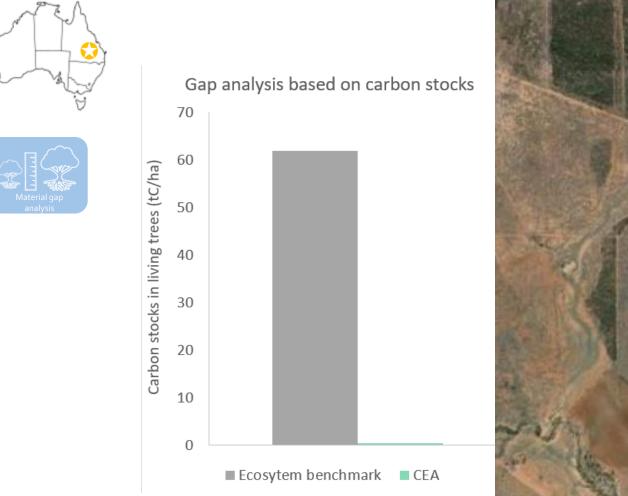
IFLM Step	Property type & size	Pastoral grazing (9,000 ha)
18	Location	Bourke, NSW. 300 mm annual rainfall
	Ecosystem	Acacia woodlands and forests
	Traditional Owners	Ngemba/Ngiyaampa Peoples
	Currently registered under ACCU scheme?	Yes, under the human induced regeneration method
ıb	Barriers limiting carbon sequestration potential	Ecological : Tree recruitment typically requires above-average summer rainfall
		Biological : Overstocking of domestic livestock & feral animals (exacerbated by drought) leads to use of trees and tall shrubs as fodder, especially damaging for young seedlings
		Physical/chemical: Heavy grazing removes ground cover, leading to poor infiltration capacity and reduced productivity when water returns, exacerbating reliance on trees and shrubs as forage
1C	Management activities to address barriers	Biological: Remove livestock (goats) and manage feral goat incursion
ıd	Risk based leakage assessment	Low
10	Evidence & monitoring requirements	Stock records, on-ground monitoring of recruitment and recovery
2a	Stratify the project	Stratification based on geophysical, vegetation and management data sets coupled with field-based sampling and remote sensing
2b	Material gap analysis (Justification of abatement potential)	Stem density measurements show statistically significant gap for all height classes above 2m

Case study 5: Acacia woodland and forests; NSW

Heavily suppressed Leopardwood (has thorns at a young age which gives it ability to survive heavy grazing pressure)

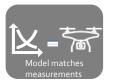

Mature Leopardwood at same site, showing carbon sequestration possible if young Leopardwood cohort is allowed to progress past grazing height.

Case study 6 (QLD): Acacia woodlands & forests (Brigalow Belt)



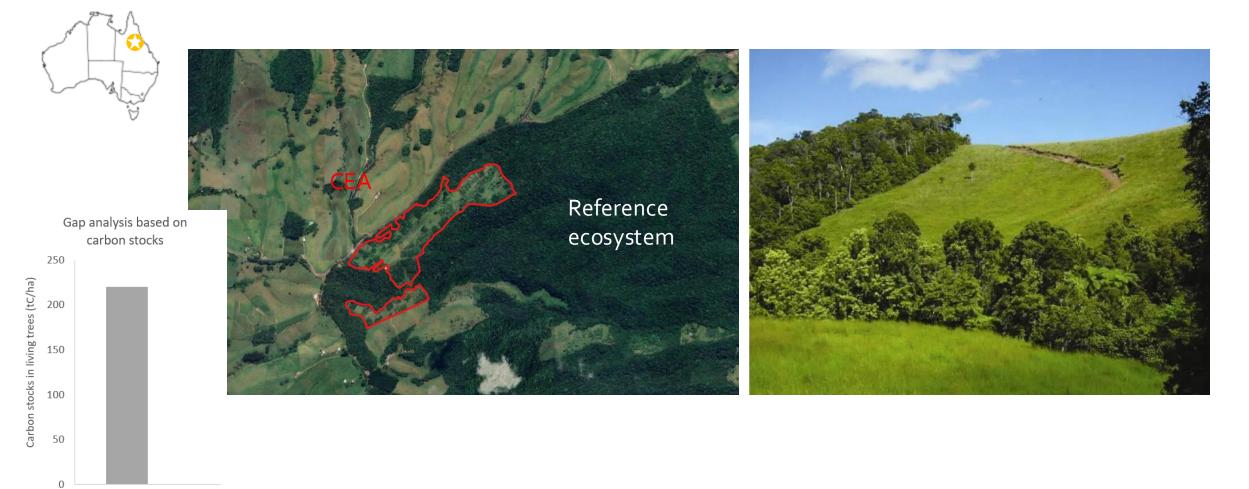
IFLM Step	Property type	Rangelands pastoral enterprise; 24,600 ha
1a	Location	Surat, QLD; 500mm annual rainfall
	Traditional Owners	Gunggarri People
	Currently registered under ACCU scheme?	No
ıb	Barriers limiting carbon	Ecological: Competition from introduced grass species
	sequestration potential	Biological : Overstocking of domestic livestock animals leads to high mortality of young seedlings, exacerbated by drought
		Physical/chemical: Mechanical suppression of woody biomass
1C	Management activities to address barriers	Biological: Reduced stocking rate, increased paddock rest Physical/chemical : Cessation of clearing
ıd	Risk based leakage assessment	 Mechanical suppression – Leakage risk is moderate-high. Proponent has other properties under its operational control, clearing could be displaced to. Leakage monitoring is required. Grazing – Moderate. Project could trigger displacement of clearing activity to provide feed for displaced livestock. Outline leakage prevention strategy in the LMS.
10	Evidence & monitoring requirements	Confirmation of Category X classification land (i.e. permission to clear), clearing history (SLATS), fuel receipts from previous clearing activity, livestock numbers
2a	Stratify the project	Woody biomass – spontaneous regeneration CEA 6,000 ha
2b	Material gap analysis (Justification of abatement potential)	 Option 1: Based on average aboveground carbon stock CEA: 0.5 tC / ha Ecosystem benchmark: 65 tC/ha (Reference ecosystem – adjacent paddock, remnant under QLD Vegetation Framework, with TERN biomass data collected in 2009)

Case study 6 (QLD): Acacia woodlands & forests (Brigalow Belt)



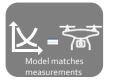
Case study 7 (QLD): Cleared agricultural land → Wet highland rainforest

3

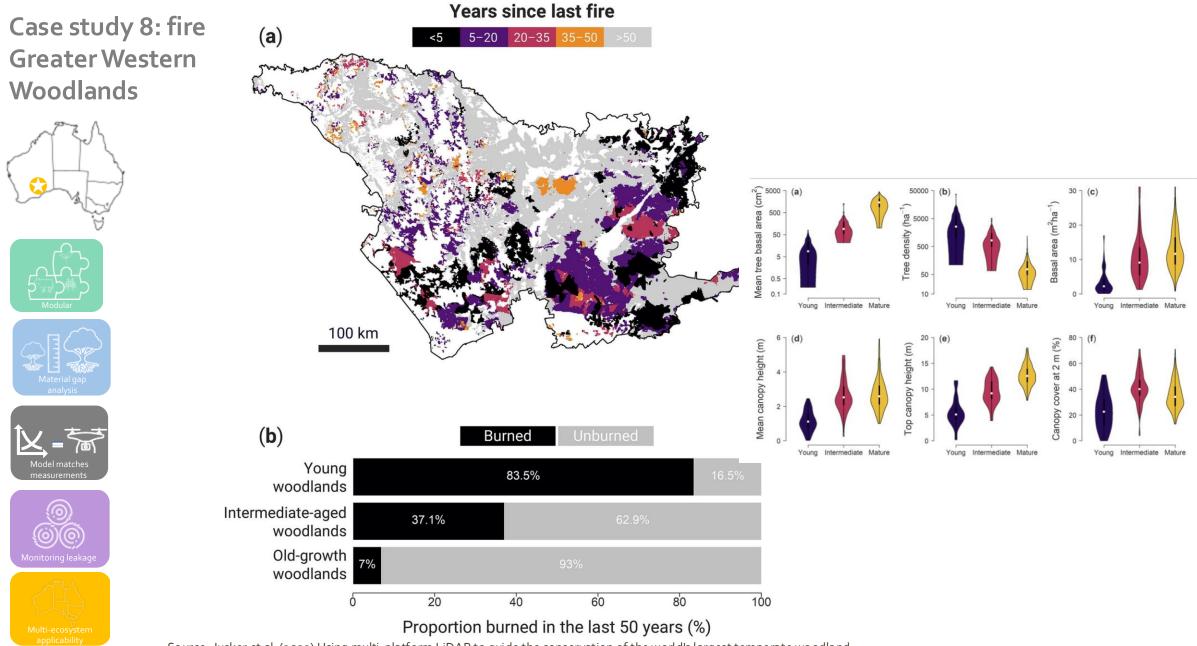


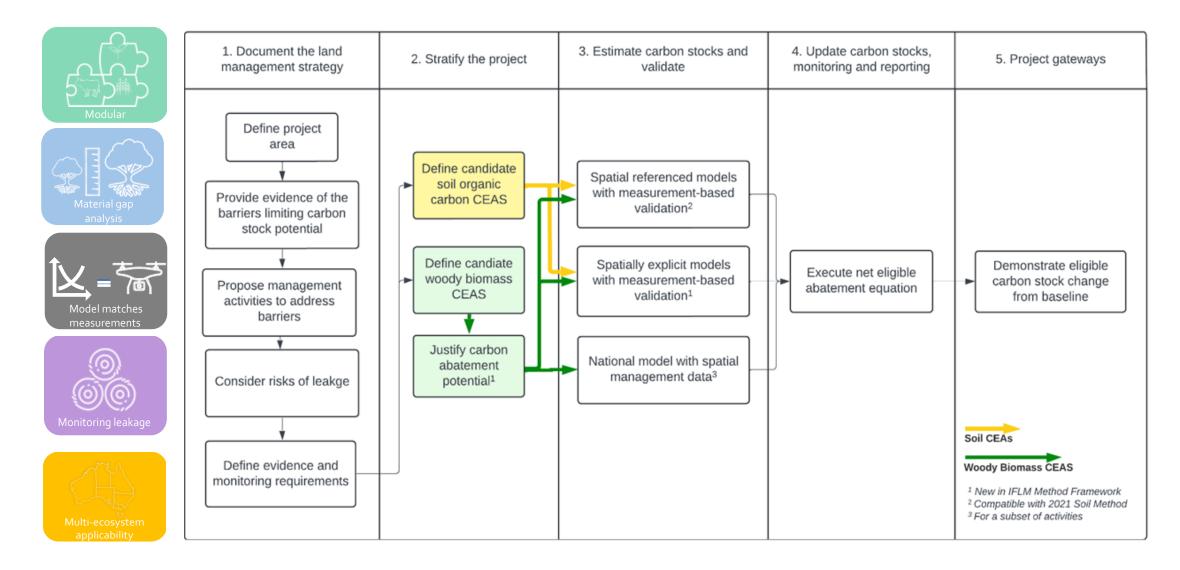
IFLM Step	Property type & size	Conservation & research, 181 ha
1a	Location	Atherton Tablelands, QLD – 1,047 mm annual rainfall
	Traditional Owners	Yirrganydji People
	Currently registered under ACCU scheme?	Woody biomass: Yes, under the reforestation and afforestation method Soil: No, but soil has been measured for research purposes
ıb	Barriers limiting carbon	Ecological: Lack of niche microclimates for rainforest restoration
	sequestration potential	Biological: Competition from introduced grass species
		Physical/chemical: Compacted soils
1C	Management activities to address barriers	Planting rainforest species (23 ha) & soil carbon sequestration following reforestation
ıd	Risk based leakage assessment	Leakage risk is low – Cattle grazed on agistment (not owned by proponent). Income from carbon is sufficient to offset income from cattle at an ACCU price of \$37. Proponent is committed to conservation and is unlikely to displace activities.
10	Evidence & monitoring examples	Receipts from planting contractors Ongoing monitoring of tree survival, progression towards forest cover Affiliated research project on rainforest restoration techniques
2a	Stratify the project	Woody biomass — facilitated regeneration CEA 23 ha Soil CEA 23 ha (overlapping woody biomass)
2b	Material gap analysis (Justification of abatement potential)	 CEA: ot C ha-1 Ecosystem benchmark: Option 1: 220 t C ha-1 (conceptual model, based on MaxBio layer) Option 2: old growth rainforest not cleared for at least 150 years (reference ecosystem, on property)

Case study 7 (QLD): Cleared agricultural land → Wet highland rainforest


■ Ecosytem benchmark ■ CEA

Case study 8: fire Greater Western Woodlands



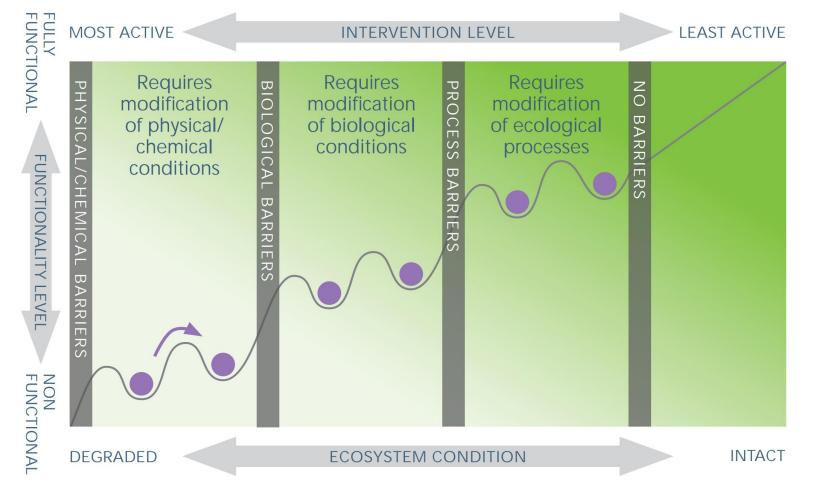


1a	Location	Greater Western Woodlands, WA
	Ecosystem	Ngadju peoples
	Traditional Owners	Various
	Currently registered under ACCU scheme?	No, this area is south of the eligible savanna fire management zone
ıb	Barriers limiting carbon sequestration potential	Ecological : More frequent, high intensity wildfires kill mature trees, and transition the ecosystem to a lower carbon stock for decades.
1C	Management activities to address barriers	Ecological: Application of highly targeted planned cultural burning to reduce fuel load
ıd	Risk based leakage assessment	Low
10	Evidence & monitoring requirements	Historical fire scars, planned burning requirements
2a	Stratify the project	Stratify by veg class and burn history
2b	Material gap analysis (Justification of abatement potential)	Material difference in basal area and tree height between young (i.e. recently burnt), intermediate, and mature ecosystems.

Source: Jucker et al, (2023) Using multi-platform LiDAR to guide the conservation of the world's largest temperate woodland, Remote Sensing of Environment, Volume 296,

Recap: broad architecture of IFLM

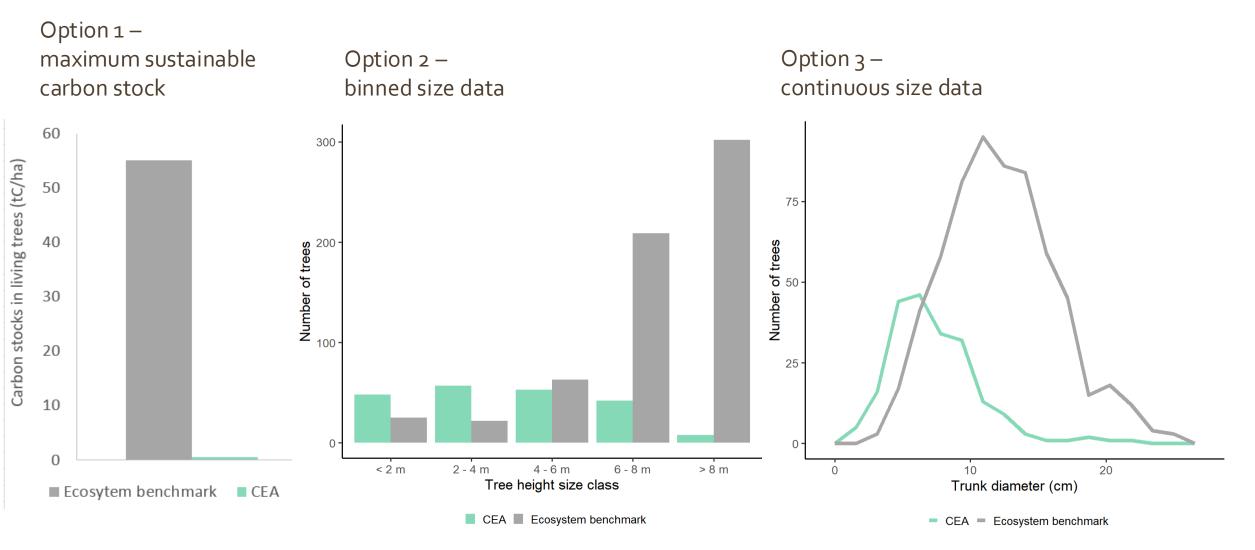
Session 2: Woody Biomass & 5-Step Process


Focus Questions

Does the Society for Ecological Restoration Australasia (SERA) ecological restoration framework provide a suitable approach to analyse barriers to woody biomass regeneration and inform carbon project management activities?

What should be the key criteria for selecting ecological benchmarks or reference sites?

The gap analysis and eligible carbon stock ratio are designed to provide robust evidence of additionality. Are there any further refinements to these proposed safeguards?


Session 2: Woody Biomass & 5-Step Process

The SERA National Standards^[1] describe three broad types of barriers (physical, biological or ecosystem process) that prevent ecosystems moving to high functioning, advanced ecosystem states. Barriers may require a variety of interventions and ecosystem dynamics may be complex and non-linear. When barriers are removed, the ecosystem is expected to proceed toward a high carbon state. Note that barriers are not necessarily sequential, but physical, biological and process barriers may all exist at the same time and be addressed in parallel.

^[1] Standards Reference Group SERA (2021) National Standards for the Practice of Ecological Restoration in Australia. Edition 2.2. Society for Ecological Restoration Australasia. Available from URL: Available from URL: http://www.seraustralasia.com/standards/home.html

Gap Analysis Examples

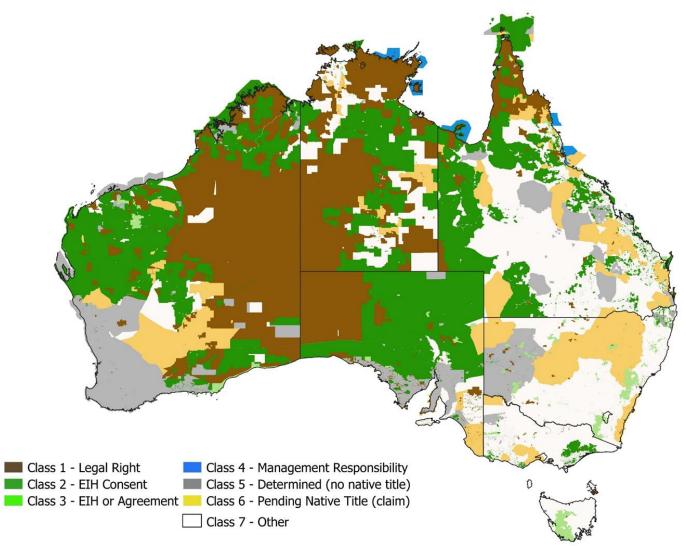
IFLM Case Studies

Session 3: Soil & 5-Step Process

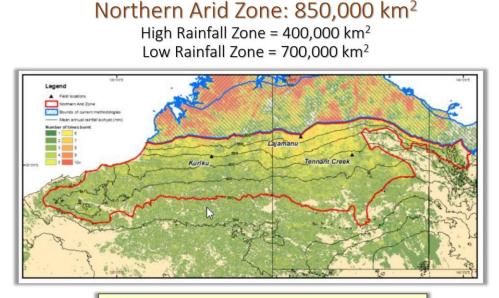
Focus Questions

It is largely proposed to mirror the requirements from the recent Soil Carbon Method 2021 given it was recently reviewed and legislated.

However, is there an opportunity to modify the restrictions on biochar as one of the eligible management activities for soil under IFLM method?


Are there any additional considerations, including logistics, that should be considered when accounting for soil sequestration under woody biomass?

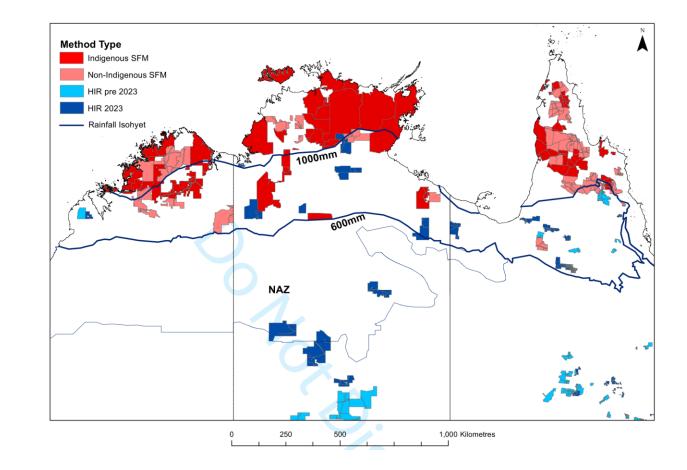
Session 4: Fire & 5-Step Process


Focus Questions

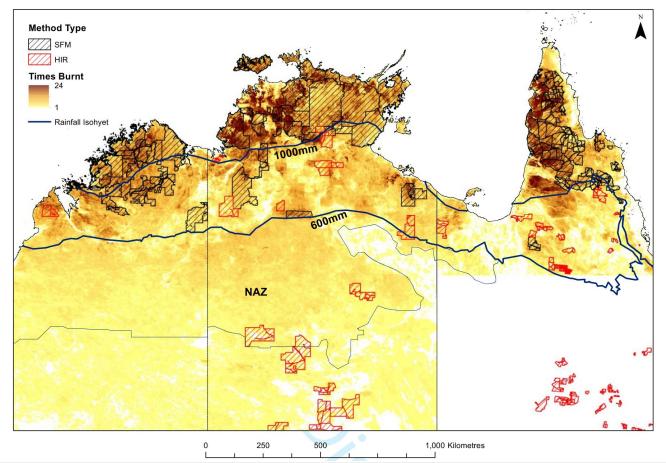
Would a regional baseline or a dynamic baseline approach be most suitable for changes to fire management?

Should there be regional restrictions on fire management as an eligible activity? Is there a need to manage the regional overlap with the savanna burning method?

• Initially there should be no overlap with the savanna burning method



Criteria:


Frequent fire

Monsoonal influence

- Low Rainfall Zone Method approach
- Spinifex dominated Shrublands and Open Woodlands

• Fire as a disturbance event and permanence management activity is already a feature in carbon farming methods

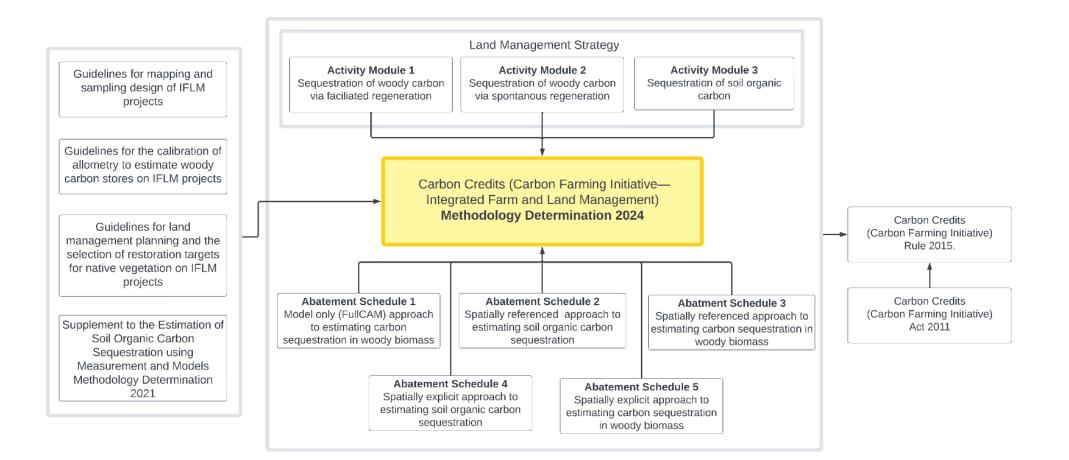
- There could be two options to calculate baselines:
 - Option 1: gap analysis + five yearly gateway (including benchmarking of projects against regional fire return intervals)
 - Option 2: dynamic baseline based on fire probability modelling

Workshop Agenda – Day 2

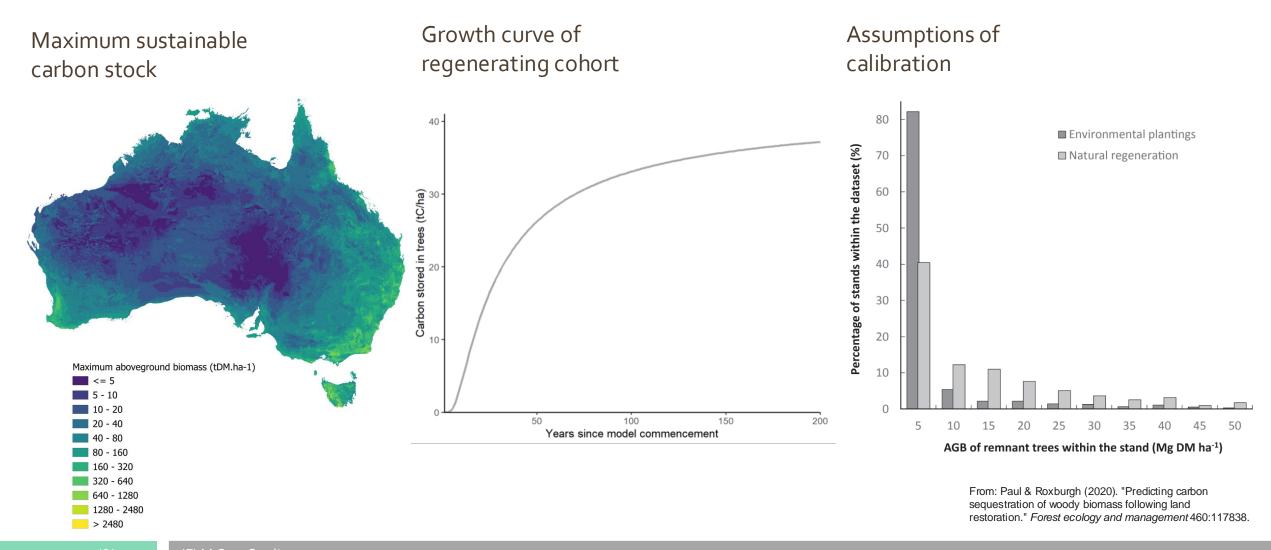
	Item
9-11am	Integrated Accounting
11-11.30am	Morning Tea
11.30-12.30am	Emerging Issues
12.30-1.30pm	Lunch
1.30-2.45pm	Risk-based leakage
2.45-3.15pm	Afternoon tea
3.15-4pm	Wrap up

Session 5: Integrated Accounting – measurement & modelling approaches

Focus Questions

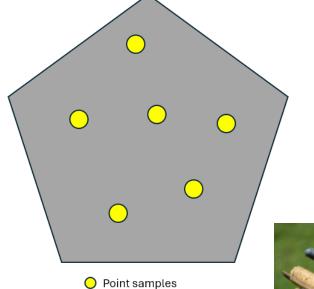

Five different Abatement Schedules are proposed for measuring and/or modelling woody biomass and soil organic carbon:

- National model woody biomass:
- Spatially referenced models Soil
- Spatially referenced models Woody biomass
- Spatially explicit models Soil
- Spatially explicit models Woody biomass


Do these schedules provide the right breadth of options and model validation requirements?

Some additional restrictions are proposed for projects opting to apply the national model (i.e. FullCAM). Is that appropriate? Should there be any targeted research or data collection to fill any gaps?

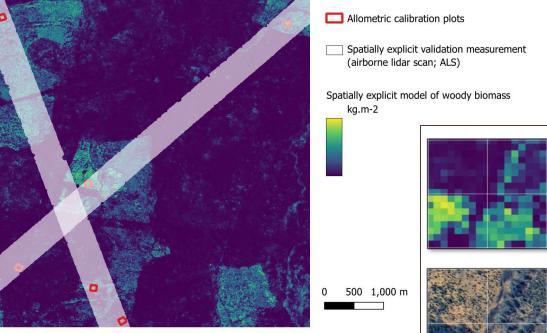
Session 5: Integrated Accounting – measurement & modelling approaches



Schedule 1 - National model – woody biomass:

Schedules 2 & 3 - Spatially referenced models

Model the average carbon stock in the CEA and multiply by the area


CEA boundary

Schedules 4 & 5 - Spatially explicit models

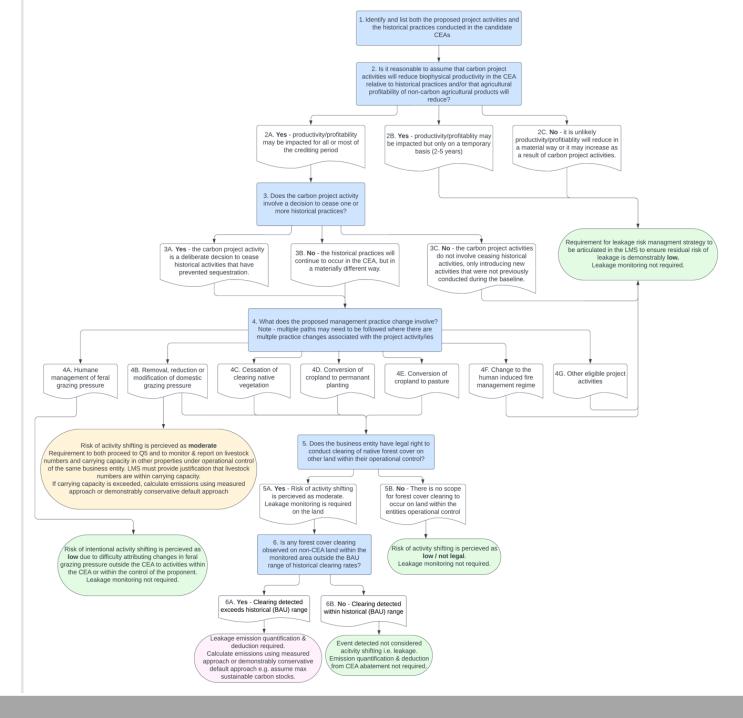
Model the distribution of carbon stocks across the CEA and sum

Note: CEA boundaries not yet defined for IFLM, not shown

Session 6: Issues Emerging

Insert based on discussions on day 1

Session 7: Risk based Leakage examples


Focus Questions

What is an acceptable materiality threshold for leakage?

Is the proposed risk-based leakage assessment tool fit for purpose? Do you agree that displacement of clearing is the main risk of material leakage?

In the Australian context where national reporting of emissions takes place, is there a need for a leakage assessment at a project level? Or is leakage accounted for under existing or scheme-wide buffer deductions?

Session 7: Risk based Leakage examples

Workshop Wrap-up

Summary of discussions

Items identified for further discussion

Preliminary overview of workshop report & next steps